120 research outputs found

    Clues to NaCN formation

    Full text link
    ALMA is providing us essential information on where certain molecules form. Observing where these molecules emission arises from, the physical conditions of the gas, and how this relates with the presence of other species allows us to understand the formation of many species, and to significantly improve our knowledge of the chemistry that occurs in the space. We studied the molecular distribution of NaCN around IRC +10216, a molecule detected previously, but whose origin is not clear. High angular resolution maps allow us to model the abundance distribution of this molecule and check suggested formation paths. We modeled the emission of NaCN assuming local thermal equilibrium (LTE) conditions. These profiles were fitted to azimuthal averaged intensity profiles to obtain an abundance distribution of NaCN. We found that the presence of NaCN seems compatible with the presence of CN, probably as a result of the photodissociation of HCN, in the inner layers of the ejecta of IRC +10216. However, similar as for CH 3 CN, current photochemical models fail to reproduce this CN reservoir. We also found that the abundance peak of NaCN appears at a radius of 3 x 10 15 cm, approximately where the abundance of NaCl, suggested to be the parent species, starts to decay. However, the abundance ratio shows that the NaCl abundance is lower than that obtained for NaCN. We expect that the LTE assumption might result in NaCN abundances higher than the real ones. Updated photochemical models, collisional rates, and reaction rates are essential to determine the possible paths of the NaCN formation.Comment: 7 pages, 10 figures. Accepted for publication in A&A letter

    Through the magnifying glass: ALMA acute viewing of the intricate nebular architecture of OH231.8+4.2

    Full text link
    We present continuum and molecular line emission ALMA observations of OH 231.8+4.2, a well studied bipolar nebula around an asymptotic giant branch (AGB) star. The high angular resolution (~0.2-0.3 arcsec) and sensitivity of our ALMA maps provide the most detailed and accurate description of the overall nebular structure and kinematics of this object to date. We have identified a number of outflow components previously unknown. Species studied in this work include 12CO, 13CO, CS, SO, SO2, OCS, SiO, SiS, H3O+, Na37Cl, and CH3OH. The molecules Na37Cl and CH3OH are first detections in OH 231.8+4.2, with CH3OH being also a first detection in an AGB star. Our ALMA maps bring to light the totally unexpected position of the mass-losing AGB star (QX Pup) relative to the large-scale outflow. QX Pup is enshrouded within a compact (<60 AU) parcel of dust and gas (clump S) in expansion (V~5-7 km/s) that is displaced by 0.6arcsec to the south of the dense equatorial region (or waist) where the bipolar lobes join. Our SiO maps disclose a compact bipolar outflow that emerges from QX Pup's vicinity. This outflow is oriented similarly to the large-scale nebula but the expansion velocities are about ten times lower (~35 km/s). We deduce short kinematical ages for the SiO outflow, ranging from ~50-80 yr, in regions within ~150 AU, to ~400-500 yr at the lobe tips (~3500 AU). Adjacent to the SiO outflow, we identify a small-scale hourglass-shaped structure (mini-hourglass) that is probably made of compressed ambient material formed as the SiO outflow penetrates the dense, central regions of the nebula. The lobes and the equatorial waist of the mini-hourglass are both radially expanding with a constant velocity gradient. The mini-waist is characterized by extremely low velocities, down to ~1 km/s at ~150 AU, which tentatively suggest the presence of a stable structure. (abridged

    The Abundance of SiC2 in Carbon Star Envelopes: Evidence that SiC2 is a gas-phase precursor of SiC dust

    Full text link
    Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si--C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars.Comment: Published in A&A. 16 pages and 10 figure

    ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-velocity bipolar jets and an Expanding Torus

    Get PDF
    R. Sahai, W.H.T. Vlemmings, T. Gledhill, C. Sanchez Contreras, E. Lagadec, L-A Nyman, and G. Quintana-Lacaci, ‘ALMA Observations of the Water Fountain Pre-planetary Nebula IRAS 16342-3814: High-velocity Bipolar Jets and an Expanding Torus’, The Astrophysical Journal Letters, Vol 835: L13 (6 pp), published 20 January 2017. The version of record is available online via doi: 10.3847/2041-8213/835/1/L13 © 2017. The American Astronomical Society. All rights reserved.We have mapped 12CO J=3–2 and other molecular lines from the “water fountain” bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ∼0.35″ resolution using Atacama Large Millimeter/submillimeter Array. We find (i) two very high-speed knotty, jet-like molecular outflows; (ii) a central high-density (>few x106 cm−3), expanding torus of diameter 1300 au; and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to >3.5 x10-4 Ms yr−1 in the past ∼455 years. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally emitting dust, implies a substantial mass (0.017 Ms) of very large (∼millimeter-sized) grains. The measured expansion ages of the above structural components imply that the torus (age∼160 years) and the younger high-velocity outflow (age∼110 years) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi–Hoyle–Lyttleton wind accretion and wind Roche-lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common-envelope evolution are needed.Peer reviewedFinal Published versio

    Gas infall and possible circumstellar rotation in R Leonis

    Get PDF
    We present new interferometer molecular observations of R Leo taken at 1.2 mm with the Atacama Large Millimeter Array with an angular resolution up to similar or equal to 0.\u27\u27 026. These observations permitted us to resolve the innermost envelope of this star, which revealed a complex structure that involves extended continuum emission and molecular emission showing a non-radial gas velocity distribution. This molecular emission displays prominent red-shifted absorptions located immediately in front of the star, which are typical footprints of material infall. This emission also shows lateral gas motions compatible with a torus-like structure

    The structure and chemistry of the massive shell around AFGL 2343: 29SiO and HCN as tracers of high-excitation regions

    Full text link
    The yellow hypergiant stars (YHGs) are very massive objects that are expected to pass through periods of intense mass loss during their evolution. Despite of this, massive circumstellar envelopes have been found only in two of them, IRC+10420 and AFGL 2343. The envelopes around these objects and the processes that form them are poorly known. We aim to study the structure, dynamics and chemistry of the envelope around AFGL 2343. We have obtained interferometric maps of the rotational lines 29SiO J= 2-1, HCN J= 1-0 and SO J(K)= 2(2)-1(1) towards AFGL 2343. We have used an LVG excitation model to analyze the new observations and some previously published line profiles of AFGL 2343. The analysis of the observational data and the fitting results show the presence of a thin, hot and dense component within the previously identified CO shell. This component can be associated with recently shocked gas, but it could also be due to a phase of extremely copious mass loss. We suggest that this shell is the responsible for the whole 29SiO emission and significantly contributes to the HCN emission. The presence of such a dense shell rich in SiO can be related with that previously found for IRC+10420, which was also suggested to result from a shock. This may be a common feature in the evolution of these stars, as a consequence of the episodic mass loss periods that they pass during their evolution. We present new results for the mass loss pattern, the total mass of the circumstellar envelope and the molecular abundances of some species in AFGL 2343.Comment: 9 pages, 9 figure

    The circumstellar envelope around the S-type AGB star W Aql Effects of an eccentric binary orbit

    Get PDF
    The CO(J=3-2) emission from the CSE of the binary S-type AGB star W Aql has been observed at subarcsecond resolution using ALMA. The aim of this paper is to investigate the wind properties of the AGB star and to analyse how the known companion has shaped the CSE. The average mass-loss rate during the creation of the detected CSE is estimated through modelling, using the ALMA brightness distribution and previously published single-dish measurements as observational constraints. The ALMA observations are presented and compared to the results from a 3D smoothed particle hydrodynamics (SPH) binary interaction model with the same properties as the W Aql system and with two different orbital eccentricities. Three-dimensional radiative transfer modelling is performed and the response of the interferometer is modelled and discussed. The estimated average mass-loss rate of W~Aql agrees with previous results. The size of the emitting region is consistent with photodissociation models. The CO(J=3-2) emission is dominated by a smooth component overlayed with two weak arc patterns with different separations. The larger pattern is predicted by the binary interaction model with separations of 10" and therefore likely due to the known companion. It is consistent with a binary orbit with low eccentricity. The smaller separation pattern is asymmetric and coincides with the dust distribution, but the separation timescale (200 yrs) is not consistent with any known process of the system. The separation of the known companions of the system is large enough to not have a very strong effect on the circumstellar morphology. The density contrast across the envelope of a binary with an even larger separation will not be easily detectable, even with ALMA, unless the orbit is strongly asymmetric or the AGB star has a much larger mass-loss rate.Comment: 10 pages, 8 figure

    Properties of compact 250 μm emission and H II regions in M 33 (HERM33ES)

    Get PDF
    Aims. Within the framework of the HERM33ES key program, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission sources. We extracted a catalogue of sources at 250 μm in order to investigate the nature of this compact emission. Taking advantage of the unprecedented Herschel resolution at these wavelengths, we also focus on a more precise study of some striking Hα shells in the northern part of the galaxy. Methods. We present a catalogue of 159 compact emission sources in M33 identified by SExtractor in the 250 μm SPIRE band that is the one that provides the best spatial resolution. We also measured fluxes at 24 μm and Hα for those 159 extracted sources. The morphological study of the shells also benefits from a multiwavelength approach including Hα, far-ultraviolet from GALEX, and infrared from both Spitzer IRAC 8 μm and MIPS 24 μm in order to make comparisons. Results. For the 159 compact sources selected at 250 μm, we find a very strong Pearson correlation coefficient with the MIPS 24 μm emission (r_(24) = 0.94) and a rather strong correlation with the Hα emission, although with more scatter (r_(Hα) = 0.83). The morphological study of the Hα shells shows a displacement between far-ultraviolet, Hα, and the SPIRE bands. The cool dust emission from SPIRE clearly delineates the Hα shell structures. Conclusions. The very strong link between the 250 μm compact emission and the 24 μm and Hα emissions, by recovering the star formation rate from standard recipes for H II regions, allows us to provide star formation rate calibrations based on the 250 μm compact emission alone. The different locations of the Hα and far-ultraviolet emissions with respect to the SPIRE cool dust emission leads to a dynamical age of a few Myr for the Hα shells and the associated cool dust
    corecore